Cat successfully skinned!

Regular visitors may remember a mention I made of an ESP8266/433Mhz gateway project a couple of weeks back.  Well, one of the reasons I found it so interesting was that I have a (fairly long-in-the-tooth) Oregon Scientific weather station installation which has always frustrated me with its lack of connectivity.  It does have a 9-pin, D-type serial connector on the bottom, but that assumes that you have an RS232 equipped machine within cable reach of the display unit (and that HID‡ would not object to yet another trailing cable).

I had toyed with the idea of plugging an ESP8266 into that port, with the excellent serial adapter  firmware from JeeLabs, but it doesn’t really address the HID/cable/ugliness issue.

Both of these methods also suffer from a fatal design flaw with this particular model of weather station, in that data isn’t squirted out of the serial port unless all of the sensors which this model was sold with are operational (otherwise you just get an error message along the lines of “Rain sensor not detected” and nothing else).  So I concluded that, by collecting the (433Mhz) transmitted data from the actual sensors (which are remote from the display unit), I could just use the data directly and ignore the base-station/display part of my weather station completely.  Hence my interest in the 433Mhz gateway project.

The final piece of the puzzle to drop into place for one of those light-bulb moments came when I was reading through the comments to one of Pete Scargill’s recent articles on the 433Mz RFLink project.  Commenter Paul gave a link to a GitHub repository called “rtl_433”, which is a 433Mhz decoder for SDR dongles by Benjamin Larsson.  Benjamin’s project is specifically for picking up the data from remote sensors (from many, many manufacturers) which operate in that open, 433Mhz band.

I’d recently bought an SDR dongle from a vendor on Ebay which was advertised as having an R820T tuner chip, suitable for ADS-B monitoring.  It turned out to be a bogus ad, with the actual tuner chip being a 0012, which doesn’t even cover the 1090Mhz ADS-B band.  I threw the useless dongle into the drawer and ordered a decent one directly from the manufacturer (which, incidentally, has worked perfectly from the first moment it was plugged in – is the place to go), writing off the $10 Ebay one to experience.

Having seen Paul’s post, retrieved and compiled Benjamin’s “rtl_433” package and pulled out the “useless” dongle from the murky depths of the spares drawer, I had direct data from all of the Oregon Scientific sensors published to MQTT in less than five minutes after plugging it in.  One cat neatly skinned in a completely different way to that which I’d originally envisaged.

Just for your reference, here’s the simple pipe to publish your data:-

./rtl_433 -F json   |  mosquitto_pub -l -h -t sensors/rtl_433

The “-F json” argument to rtl_433 is to force the data to be output in JSON format.  It will also accept “csv” (comma separated values) and “kv” (key:value pair) format arguments.

And here are a few lines of sample data from the various sensors:-

{"time" : "2017-03-21 15:52:24", "brand" : "OS", "model" : "THGR968", "id" : 204, "channel" : 1, "battery" : "OK", "temperature_C" : 8.300, "humidity" : 49}
{"time" : "2017-03-21 15:52:24", "brand" : "OS", "model" : "BHTR968", "id" : 66, "channel" : 0, "battery" : "LOW", "temperature_C" : 19.700, "temperature_F" : 67.460, "humidity" : 30, "pressure" : 946}
{"time" : "2017-03-21 15:52:25", "brand" : "OS", "model" : "BHTR968", "id" : 66, "channel" : 0, "battery" : "LOW", "temperature_C" : 19.700, "temperature_F" : 67.460, "humidity" : 30, "pressure" : 946}
{"time" : "2017-03-21 15:52:26", "brand" : "OS", "model" : "WGR968", "id" : 183, "channel" : 0, "battery" : "OK", "gust" : 1.400, "average" : 1.400, "direction" : 902.000}

Note that the “direction” readings are meant to be in degrees, so 902.000 (last line) doesn’t make much sense. Looking at the code and at the actual weather station display, it seems like there’s a nibble ordering issue with the decoding of the raw data and that should actually read “290”, instead (the fix is tested here and is now working its way backup the line).

‡  “Her InDoors”

Vinduino (with added ESP8266) wins Hackaday “Best Product” prize

Regular readers of Hackaday are probably already aware of the Hackaday prize competition, where readers are invited to submit their own hack or design to win a grand prize.  This year’s competition also included some extra prizes for specific categories and Hackaday have just announced that the “Vinduino” project is the winner of the “Best Product” category.

Vinduino is a project which I’ve been following with interest, as it centres around automated irrigation of a vineyard and I happen to be a fruit farmer who has irrigation problems (usually solved with a big water tank and lots of buckets) and also grows grapes as a major crop (though not for wine).  Reinier van der Lee has  put a lot of effort into experimentation, production and documentation of his project over the course of the past year and has now reaped the reward in the form of $100k cash funding, as well as a full year of residency at the Pasadena Supplyframe Design Lab, to get his project developed into a product.

Vinduino_R PCB imageAs you’d expect from the name, the project started out as purely Arduino based but, as with many projects over the past year and a half, has managed to incorporate an ESP8266 along the way for internet connectivity.  Although using an ESP-01 connected to an Arduino Pro-Mini and using the AT commend set is unlikely to have any of our more seasoned readers sprinting for their soldering iron, it’s worth noting that this is a working project with PCBs available on-line (from our friends over at OSH Park) and full code from GitHub, so you can replicate it and have it working in a very short time.

Very many congratulations to Reinier for a well executed project and a deserved win.  I look forward to seeing the finished products and will certainly be breaking out the plaster-of-paris over the slower winter months to try my hand at his version of soil moisture sensors.